
SESM 66-4

STRUCTURES AND MATERIALS RESEARCH

DEPARTMENT OF CIVIL ENGINEERING

IN

APRIL 1966

A BENDINGANALYSISOF

ELASTIC-PLASTICCIRCULAR

PLATES

M. KHOJASTEH-BAKHT "

S. YAGHMAI
ResearchAssistants

GPO PRICE $

CFSTI PRICE(S) $

E. P. POPOV

Faculty Investigator

Hard copy (HC)

Microfiche (MF). ,

ff653 July65

Report to

National Aeronautics and Space Administration

NASA Research Grant No. NsG 274 S-2

STRUCTURAL ENGINEERING LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY CALIFORNIA

e' p

==

(PAGES)

I_l_ CR OR T_Fx O_ ER)

(THRU)

/
(COD£}

(CATE G 0 R_l



Structures and Materials Research

Department of Civil Engineering

A BENDING ANALYSIS OF EIASTIC-PLASTIC CIRCULAR PLATES

by

M. Kojssteh Bakht

S. Yaghma i

Research Assistants

E. P. Popov

Faculty Investigator

Report to

National Aeronautics and Space Administration

NASA Research Grant No. NsG 274 S-2

Structural Engineering Laboratory

University of California

Berkeley, California

April 1966



PREFACE

The investigation reported herein is a part of the research carried out

under the sponsorship of National Aeronautics and Space Administration,

Research Grant No. NsG-274, Supplement No. 2.

The research described in this report was conducted under the supervision

and technical responsibility of Egor P. Popov, Professor of Civil Engineering,

Division of Structural Engineering and Structural Mechanics, University of

California, Berkeley, California.

Mr. M. Khojasteh-Bakht, Graduate Student, Div. of SESM was principally

responsible for the work of Chapters 1 and 2. Mr. S. Yaghmai, Graduate

Student in the same Division, developed most of the computer programs required

in this investigation and was mostly responsible for the preparation of

Chapter 3.

In addition to the NASA sponsorship, assistance rendered by the University

of California Computer Center (Berkeley) is gratefully acknowledged.

Critical discussions during the progress of the work with John Abel,

and H.Y. Chow, Graduate Students, were most helpful.

Mr. B. Kot prepared the drawings and Mrs. M. French typed the final report.



Table of Contents

Abstract ..............................

Introduction ............................

I. Review of Previous Work ...................

I.I Plate Bending Using Deformation Theory of Plasticity

1.2 Limit Analysis .....................

1.3 Rigid -Work Hardening Materials .............

1.4 Elastic-Plastic Analysis Utilizing Incremental Theory

of Plasticity ......................

1.5 Experiments on Circular Plates .............

If. Elastic-Plastic Analysis of Circular Plates .........

c

2.1 For_ord .........................

2.2 Equilibrium Equations ..................

2.3 Strain-Displacement Relations ..............

2.4 Stress-Strain Relations .................

2.4.1 Elastic-Perfectly Plastic Solids .........

2.4.2 Elastic-Plastic Strain Hardening Solids .....

2.5 Stress-Resultants ....................

2.6 Governing Differential Equation .............

2.7 Stiffness Matrix for an Annular Element .........

2.8 Stiffness Matrix for a Disc Element ..........

2.9 Plate Stiffness Matrix .................

Page

Ii

13

15

15

15

16

17

20

29

38

40

41

45

48



2.10 TransfOrmation of Distributed Transverse Loads on the

Element to Nodal Ring Forces ..............

2.11 General Remarks ....................

50

53

III. Applications .........................

3.1 Examples ........................

3.2 Description of Programs .................

IV. Conclusions .........................

Bibliography .........................

Appendices .........................

Nomenclature .........................

59

59

Iii

113

116

122

143



ABSTRACT

3 2Lifo
This report is concerned with the problem of elastic-plastic bending of

circular plates with axi-symmetric loading and support conditions. Incremental

theory of plasticity with yon Mises yield condition, and associated flow rule

together with the Kirchhoffean small deformation theory of plates have been

adopted. Finite element type of approach using direct stiffness method of

:L

matrix analysis of structures was employed. An annular plate is taken ss the

primary element which is subdivided along its depth into a number of layers.

The material properties are assigned to each layer, and stiffness matrix of

the element has been established. Loadings are applied in increments.

Examples of simply supported and clamped circular plates made of elastic-

perfectly plastic as well 8s elastic-plastic with isotropic strain hardening

materials are given. Other support conditions and material properties can

be treated. The effect of change of material properties within each increment

of loading, number of elements, and number of layers have been studied.



INTRODUCTION

The application of the incremental (flow) theory of plasticity in the

solution of structural problems_ particularly those related to plates and

shells, has caused many mathematical difficulties° The closed form solutions

have been obtained for a very few simple problems such as thick wall cylinder_

wedge, and torsional shaft made of nonhardening materials with one or at

most two parameter loading° Further restrictions_ such ss incompressibility,

have been occasionally imposed to simplify the solution° No general approach

to the solution of this class of problems exists so far° Each solution re-

quires a special mathematical treatment and researcher's ingenuity°

A significant amount of literature is devoted to the development of the

constitutive 18ws of plasticity both in micro and macro scales° The foundation

of the theory is not as yet firmly established and further research _,ill be

needed in the future.

However, due to the great demand in the design of lightweight structures

to achieve economical designs and the most realisitic appraisal of the

behavior, the best available theories have been employed in the analysis°

Several approaches have been pursued°

During the last dec_de considerable attention has been given to the so-

called limit analysis approach° The bounds of the collapse load_ in the sense

of small deflection theory, have been obtained for a number of problems°

* See for example: Prager and Hodge_ "Theory of Perfectly Plastic Solids_"

John Wiley, N.Y. , 1951o



Lower and upper bound theorems were employed in attaining the collapse load.

In order to apply these theorems, the materials should exhibit considerable

deformation under constant load such as in the case of mild steel. Although

limit analysis turned out to be fruitful in the analysis of rigidly connected

frames where strength is the controlling factor in the design, it generally

does not lead to any physically significant results in plates and shells. This

is essentially so because of a favorable change in geometrical configuration

during loading which brings the membraneforces into action.

A number of solutions are also available for large deformation, for which

the elastic deformation is quite negligible compared to the unrecoverable

component of deformation. These are particularly applicable in the metal

processing.

The attempt to solve the problems, utilizing the total or deformation

theory of plasticity has not yet been completely abandoned. In spite of its

mathematical inconsistency and physical unsoundness, in general, it can be

used satisfactorily if the stress path in the process of loading can be

predicted beforehand.

For those problems where the plastic deformation sets in with a small

change in geometry a more realistic solution which takes elastic as well as

plastic deformation into account should be sought. This will enable s better

prediction of deflection and stress distribution than the one using elastic

theory.
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At the present time, the use of digital computer in the solution of plas-

ticity problems appears to be very fruitful. It is quite feasible to antici-

pate that in near future many important problems will be solved with the aid

of a computer. The improvement of numerical techniques reduces the numerical

errors and thus increases the reliability of the results.

This report is concerned with the analysis of circular plates under arbit-

rary axisymmetric loading. The support conditions are axially symmetric, but,

otherwise, they can be specified arbitrarily. The examples are given for

clamped and simply supported solid plates. By the proposed approach, the

problem of overhanging or annular plates also can be handled without much

difficulty. The plate may be connected with other structures such as circular •

cylinders or rotational shells, and the developed method can be used to

0

determine the redistribution of stresses at junctures due to plastic deformation.

The material properties used in the proposed analysis can be completely arbit-

rary. This can be specified from experimental data or any valid analytical

expressions. To illustrate the method, elastic-perfectly plastic and elastic-

plastic isotropic strain hardening materials were employed. Any other laws or

experimental data can be specified as desired.

The procedures discussed here make use of incremental law which enables

one to trace the loading history. The internal forces and deflections can

be determined at any stage of loading. The solution is restricted to small

deformation so that deflection remains small in comparison to the thickness.

In other words, the influence of membrane stresses which may be developed as
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the result of deformation is not accounted for. Shear distortion is also

neglected in conformity with the conventional Kirchhoff's hypothesis which

asserts that a straight fiber perpendicular to the middle plane remains

straight, unstretched, and perpendicular to the deflected state of the middle

surface after deformation.

The plate is divided into s number of annular elements. Each element is

further sub-divided into a number of layers along its depth. The material

properties were assigned to each layer at every stage of loading. Direct

stiffness method of matrix analysis of structures was used.

The effect of the change of number of elements and layers as well as the

influence of variation of material properties within each increment of loading

were studied.

All computations were carried out by IBM 7090-7094 digital computer

available at the Computer Center of the University of California, Berkeley,

using FORTRAN IV language.



I. REVIEW OF PREVIOUS WORK

The problem _ behavior of axi-symmetrically loaded and supported circular

plates loaded beyond elastic limit has attracted the attention of s number of

investigators, because of the spparent simplicity of the problem and the vast

number of applications. A brief review of some of the work; utilizing

deformation theory of plasticity, limit analysis, and incremental theory of

plasticity together with the results of some of the experimentsl investigations

which have been published so far follows.

i.I Plate Bending Using Deformation Theory of Plasticity

The Heneky type deformation theory of plasticity together with Huber-

Mises yield condition was used by Sokolovsky 1944 [1,2] in the solution of

bending of circular plates. Kirchhoff's hypothesis and small deflection

theory were employed. The problem of simply supported plate under uniform

and axisymmetrical partial uniform load which contains as its extreme case

concentrated load at the center was solved. The material is considered to be

elastic-perfectly plastic and the scheme to solve for material with strain

hardening was also indicated.

Bending of circular and snnular plates with variable thickness have

been discussed by Grigoriev [3 I . Dvorak 1959 [4 1 discussed an annular plate

which is subjected to a ring load at outer boundary and has a simply supported

inner boundary.
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The problem of circular plates clamped around the boundary and subjected

to uniform and partial circular uniform load was solved by Ohashi and Muraksmi

[5J 1964. The material is considered to be non-hardening and obeys von Mises'

yield condition.

1.2 Limit Analysis

The extension of the theorems of limit anslysis_ encouraged many authors

to apply them to the problems of plates and shells.

The early attempt to apply limit analysis theorems to obtain the collapse

load of circular plates was made by Pell and Prager in 1951 [6]. The materials

were considered to obey yon Mises' yield condition. A simply supported plate

subjected to uniformly distributed load was discussed, the bounds of the collapse

load were established, and an approximate value for the load-carrying capacity

was suggested. Hopkins and Prager in 1953 [7J discussed the problem for

materials obeying Tresca's yield condition. Simply supported and clamped

plates subjected to certain simple tyres of axially symmetric loading were

treated. The exact collapse loads were obtained° Drucker and Hopkins in 1954

[8] extended the work to the case of large and small overhang. Hopkins and

Wang in 1955 [9] compared the collapse loads obtained by utilizing Mises,

Tresca, and parabolic yield conditions for both simply and built-in supports.

It is interesting to note that the ultimate load derived by Sokolovsky in

1944 [1] using deformation theory of plasticity agrees closely with the collapse

• Drucker, D.C., Prager, W., and Greenberg, H.J., "Extended Limit Design

Theorems for Continuous Mediu." Qu_rL. Applied M_th. Vol. 3, No. 4, Jan.

1952, pp. 381-389.



load obtained using limit analysis theorems. Finally, s set of charts for the

design of circular plates under axially symmetric loading was compiled by Hu

in 1960 [ii_.

The generalization of the collapse load of circular plate under con-

centrated load for plates of arbitrary shape was made by Schumann in 1958 [12]

and also for variable fixity by Zaid in 1958 [13i. It was found that for

materials obeying Tresca's yield condition (regardless of shape and end fixity)

the limit load is equal to 2n times the unit yield moment°

The load carrying capacities of annular plates with either fixed or

simply supported edge conditions were discussed by Chernins in 1958 [14].

Trescs's yield condition was utilized. The case of simply supported edge

conditions was later corrected by Hodge in 1959 [15]o

Attention was also directed towards the minimum weight design of circular

plates, utilizing limit analysis method. References [16] through [20] can be

cited here. In 1964 an analog model was devised by Marcal and Prager [21]

and applied to a circular plate problem.

Limit analysis was also employed to obtain the collapse load of cir-

cular plates made of initially anisotropic materials. In 1956 Sawczuk [22]

discussed s solid plate with either simple or fixed boundary subjected to

uniform load. The materials of plates were considered to be cylindrically

orthotropic, obeying the modified Tresca's yield condition which has

different platic moduli in two perpendicular directions° Non-homogeneity has

also been discussed in this paper. Hu 1953 [23] studied the similar problem;
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and a series of design charts were constructed for ultimate design of circular

plates under axisymmetric loading by Msrkowitz and Hu in 1964 [24]. Mura et

al (1964) [25] extended the work for materials obeying the yield criterion

suggested by Hill, which reduces to the Mises yield criterion for isotropic

materials.

The problem of interaction of in plane tension and bending in annular

plates was discussed in 1960 by Hodge et sl [26], and bounds on the interaction

curve were established for various inner edge support conditions.

In 1963 Sawczuk et 81 [27] studied the effect of transverse shear on

the plastic bending of simply supported circular plates. Kirchhoff's hypothesis

was modified to allow for transverse shear deformation. Both Tresca's and

Mises' yield condi%ions and their associated flow rules were employed. Collapse

loads were calculated for plates under uniform load over central area.

Finally, linear programming was also used to obtain the collapse load

of plate problems [28]. Examples of simply supported and clamped circular

plates under uniform load are given.

Detailed discussions of some of the above solutions can be found in books

by Hodge, 1961 [29], and 1963 [30], and Sawczuk and Jaeger, 1963, [31].

1.3 Rigid-Work Hsrdening Materials

The use of piece-wise linear yield conditions and associated flow rules

were suggested by Prager 1955 [34] and Hodge* for the solution of work-

*Hodge; Jr.; P.G.: "_e Theory of Piecewise Linear Isotropic Plasticity,"

Deformation and Flow of Solids, Colloq. Madrid, Sept. 1955, Edited by

R. Grammel, Springer.
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hardening problems. It allows total stress-strain laws to be used in the small,

at the sametime retaining the characteristic features of incremental laws in

the large. As indicated by Hodge [351, the plastic flow rules can be explicitly

integrated under restrictive conditions, defined as a "regular progression."

That is, the stress point may not move from one side to another, from one

corner to s side, or back into the elastic zone. This imposes a serious re-

striction which does not allow it to be used for problems such as clamped

plates.

As sn example Prager [341 presented the analysis of a simply supported

circular plate subjected to a uniformly distributed transverse load. Tresca

yield condition together with the linear kinematic hardening was used. The

same problem was discussed by Boyce 1956 [32] using a piecewise yield condition

which approximates that of Mises' Later he extended the solution to s

partially clamped plate [36]. In 1955 Eason [33] discussed the problem of

plates under a concentrated load.

The concept of linear, isotropic strain hardening was employed by Hodge

(1957) [351 in the solution of sn infinite annular plate. Tresca yield

condition was employed and the annulus was assumed to be simply supported st

its inner edge and free st infinity. It was subjected to a slowly increasing

moment applied to its inner edge. The loading process was divided into four

stages, of which the fourth stage deviates from the regular progression.
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Perrone and Hodge (1959) [37] derived two sets of strain hardening flow

laws based on kinematic hardening for circular plates madeof an initially

Tresca material. These laws, called complete and direct hardening, differ in

the point where the plane stress assumption is introduced. The solutions of

finite as well as infinite annular plates and simply supported circular plates_

using the derived laws, are reported. The results were compared for complete,

direct, and isotropic hardening.

Hwang (1959) [38] treated the problem of simply supported circular

plates under uniform load. Mises yield condition and associated flow rule

together with the isotropic strain hardening were employed. Numerical inte-

gration was used to solve the set of non-linear differential equations.

Finally, in 1963, Chzhu-Khua [39] using Tresca yield condition and

linear strain hardening , presented the solution of plate under partially

uniform load.

1.4 Elastic-Plastic Analysis Utilizing Incremental Theory of Plasticity

An early attempt to estimate the deflections of circular plates made

of eisstic-plastic materials using incremental theory of plasticity was

made by Haythornthwaite in 1954 [40]. The yield condition of Tresca and

associated flow r_le were employed. The key assumption was made that st any

point on the plate the entire thickness was either fully elastic or fully

plastic. An annular plate simply supported at the outer edge and clamped

to a centrally loaded rigid disc at the inner edge was analyzed. The

results obtained were compared with experiment.
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Gaydonet al (1956) [41] discussed the problem of circular plate under

a uniform momentaround its edge. Mises yield condition and its associated

flow rule were assumedto be valid.

Olszak et al (1957) [42], 1958 [44], [45] treated the elastic-plastic

bending of non-homogeneous orthotropic circular plates. The material was

assumed to exhibit no strain hardening and to obey the generalized Mises'

yield condition. The general moment-curvature relations were derived by

ordinary plate theory. A restriction that the principal curvatures progress

proportionally was later introduced to make the expressions more tractable.

Limitation is slmllar to that of proportional loading." The authors report

that if we require the continuity of stress at the elastic-plastic boundary,

it is not possible, in general, to satisfy the normality rule which is a

consequence of Drucker's postulate of stability. On the other hand, utilizing

the associated flow rule, it is not possible, in general, to attain the

continuity of stresses.

The analysis of a clamped circular plate made of incompressible elastic-

perfectly plastic materials obeying Tresca's yield condition and the associated

flow rule was discussed in 1957 by Tekinalp [43]. An assumption that any

plate element is either entirely elastic or entirely plastic was made. This

is strictly valid for a sandwich plate.

Eason (1961) [463 discussed the problem of simply supported plate under

partial uniform load. The von Mises yield condition and the corresponding

flow rule were assumed for the elastic-perfectly plastic material of the plate.
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The stress field was obtained, but the velocity field was derived for the

limiting case of concentrated load. A comparison has been madewith solutions

obtained utilizing the Tresca yield condition. It is reported that the stress

distribution is relatively insensitive to the change of yield condition, but

the plastic zone is expected to be sensitive to the yield condition. Moreover,

the behavior of uniformly loaded plate is more sensitive to the variation of

yield condition than that subjected to concentrated load.

Analysis of centrally clamped annular sandwich plates under uniform loads

was made by French in 1964 [47], utilizing Tresca's yield condition. The plate

behavior has been traced from zero to the collapse load, and three phases of

loading are considered after initial yield. Collapse pressure is given

graphically as a function of the ratio of inner to outer radii.

In 1964, Lackman [48] presented a method for the analysis of 8xi-

symmetrically loaded circular plates. The method makes use of an analogy

between plastic strain gradients and transverse loads. The Prandtl-Reuss

equations together with the yon Mises' yield condition and isotropic hardening

were employed. An example is given for a simply supported circular plate

under uniform load.

1.5 Experiments on Circular Plates

Experiments other than the ones mentioned earlier to check the

theoretical results have also been published. In 1954 Cooper and Shifrin

[49] presented the results of nine simply supported mild steel circular plates
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under concentric uniformly distributed lOado Comparison was made with limit

loads obtained by Hopkins and Prager [7]. Similar kinds of tests were per-

formed by Dyrbye et sl (1954) [50], Hsythornthwaite (1954) [51], and Foulkes

et al (1955) [52] on either clamped or simply supported plates.

Correlation of experimental evidence with collapse load using limit

analysis turned out to be unsatisfactory.

Haythornthwaite and Onat 1955 [53] reported the test results of steel

plates under reversed loading. It was observed that although the limit load

is often of little physical significance for a monotonically increasing load,

it becomes a measure of the minimum load carrying capacity in reversed loading.

This question still needs further investigation.

Lance and Onat 1962 [54] reported additional experiments on mild steel

plates under uniform and partial load over a small circular central region.

Comparison with collapse load in the sense of limit analysis re-affirmed the

previous results. Etching patterns and mill-scale flaking patterns were also

studied in this report.
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II. ELASTIC-PLASTIC ANALYSIS OF CIRCULAR PLATES

2.1 Foreword

For the purpose of analysis, the plate is divided into a number of

annular elements, which are further subdivided into a number of layers along

their depths. The primary objective is to establish the stiffness matrix of

an annular element for a typical increment of loading. The assemblage of these

annuli can be eas_,y accomplished using direct stiffness method of matrix

analysis of structures. A modified analysis will also be given for a central

circular disc element for solutions of solid plates. Loadings are applied at

circular nodes where two consecutive elements meet. Both tributary area

approach and consistent equivalent nodal ring load method were employed to

convert the transverse load applied within the elements to the nodal ring

loads. Possibility of loading ss well as unloading is included in the

analysis of each load increment.

The following relations were established for a typical loading increment.

Notations will be described as they first appear, and they are also collected

at lhe end for reference.

2.2 Equilibrium Equations

By adopting the sign convention for positive quantities as shown in

Fig. I, the equilibrium of the increments of moments and transverse forces for
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the case of axisymmetric loading are as follows

dAM
r 1

+- (AM
dr r r -AM 9) +AO = 0

(2.1)

dAQ i
+ -- A Q = A p(r)

dr r
(2.2)

Eliminating AQ between equations (2.1) and (2.2), we get

d2 A Mr I d A Mr d A Me

2 + -- ( 2 ) + A p(r) = 0r dr dr
dr

(2.3)

Note that the symbol A indicates s finite increment.

Z_r, and ZhM e are increments of radial and tangential moments per unit

length.

_Q is increment of radial transverse shear per unit length.

2.3 Strain-Displacement Relations

In accordance with small deformation theory and the assumption that

plane section normal to reference plane before deformation remains so after ,

the strain-displacement relations in the absence of in-plane forces are

expressed as follows

c e
: z (24 

* See for example, Timoshenko and Woinowsky-Krieger, "Theory of Plates and

Shells," 2nd Edition, pp. 51-53_ McGrsw-Hill_ 19590
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where :

&er, Aee are radial and tangential strain increments, respectively.

ZiWr, Zi_e are measures of radial and tangential deformations which are

only functions of r. z is a coordinate distance measured positive downward

from the reference plane.

For axi-symmetric deformation, and neglecting shear distortion, that is

assuming plane section normal to the reference plane before deformation remains

normal to its deformed state, the following relations hold*

d 2 _w

d r 2

1 dAw

r dr

(2.5)

where _ l_r, A Me are now the increments of curvature of the reference surface,

and A w is transverse deflection increment which is taken to be positive in

the direction of transverse load application.

2.4 Stress-Strain Relations

A constitutive relation for an elastic-plastic solid should include the

state of stress and strain as well as their rates in order to account for the

history dependence. As has been mentioned by some authors, an attempt to

express the various properties of elastic-plastic solids by means of a single

* Ibid
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mathematical model can be hardly achieved. Within the framework of a

phenomenological approach, the attempt has been madeboth to construct the

general theories to be adequate for describing the phenomenaoccurring beyond

the elastic limit, and to formulate it in s mannersuitable for practical

applications. Because of non-linearity and irreversibility of the deformation
/:

processes, even the simplest model is generally too complicated to apply0

In order to establish constitutive relations for plastic solids three

ingredients -- yield condition, flow law, and hardening rule -- must be

defined. A number of surveys regarding the constitutive laws of plasticity

have been published. The discussion here will be limited to those which are

closely related to the laws chosen to demonstrate the proposed method of plate

analysis. The general theories will not be discussed. The reader, however,

is referred to references [55] through [62] for details of recent progress in

this area.

Prandtl-Reuss theory is most widely used to describe elastic-plastic

deformation. The materials, here, are considered to be time independent and

initially free from residual stresses. In addition, the process is considered

to be isothermal and the deformation small. Following Prsndtl-Reuss theory,

strain tensor is assumed to consist of two components: elastic or recoverable

and plastic or permanent.

E P

Eij = Eij + cij i)j = 1,2,3 (2.6)

or

E P
d E..-- d E.. + d E.. (2.7)

iJ 1j ij
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where superscripts E and P designate elastic and plastic components, respect-

ively. Some authors, instead, have preferred to use the rate of strain

dE..

5.. - l_ , and similarly rates of stress and displacement. Since,
10 dt

however, it has been already assumed that the material behavior, and con-

sequently its constitutive relations, are time independent, the latter notation

seems to be unnecessary. This avoids s possible confusion with viscosity, and

its use is abandoned here.

The elastic component of strain is related to stress through the

generalized Hooke's law

E

d eij = Cijkl d _kl i,j,k,_ = 1,2,3 (2.8)

which in the case of isotropic materials becomes

E l+V V

d £ij - E d Tij - _ dTkk 5ij (2.8b)

Here, the repeated indices imply summation.

In order to establish relations between the plastic component of strain,

and the state of stress; the existence of the plastic potentis!, and the

validity of normality rule at a regular point on the yield surface are

generally assumed, that is

P de 8f
d ei3P = d el3 = _,_.. ,"e.lip = 0 (2.9)

iJ
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where,

f (Tk_ eklP' ,K) =0

is the yield condition, and

1

eij = ¢ij - 3 ekk 5ij

is the deviatoric strain tensor.

¢ is a non-negative function which may depend on stress, stress rate,

strain, and history of loading.

is s work-hardening parameter.

The condition of loading, neutral losding, or unloading is distinguished

bf
by whether, _-?.. d Tij is greater, equal, or smaller than zero, respectively.

13

Drucker* suggested

de = G _ d Tkl (2.10)

where G is independent of the stress rate.

2.4.1 Elastic-Perfectly Plastic Solids

Since the plastic deformation can be assumed to occur without a change

P
of volume, i.e., £..

ii

= 0 , expression (2.7) can be re-written as follows

E P E _f

d eij = d eij + d eij = d eij + d_ T_-.. • _2.|I)
ij

*Drucker, D.C., "A Definition of Stable Inelastic Material," J° Appl.

Mech., Vol. 26, pp. 101-161, 1959.
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Assuming the materials obey the Mises yield condition

f = J2 - k2 = 0

where

1

J2 = ._ sij sij

is the second invariant of stress deviator, and

(2.12)

1

sij = _ij - 3 Tkk 5ij

where k, the yield stress in simple shear is k = I____ _Y, where Gy is yield

J3
stress in uniaxial tension. Using these definitions,

_f

_-'_'.. - sij
iJ

(2.13)

For isotropic elastic material the Hooke's law in terms of stress and

strain deviators is expressed as

E 1

eij - 2_ sij (2.14)

or

E 1

d eij - 2_ d sij (2.15)

Where, _ is the shear modulus.

Substitutions of (2.13) and (2.15) into (2.11) yields

i

d eij - 2_ d sij + sij d¢ (2.16)
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Considering that

df = s.. d s.. = 0
13 13

multiplying (2.,16) by sij , and summing, we obtain

0
s . . . + s s de = 2 k 2 de

sij d eij = _ 3 ij ij

s.. d e..

de - ij 13

2 k 2

Substituting (2.18) into (2.16) and transposing, we get

(2.17)

(2.18)

1

d sij = 2_ ( d eij 2 k 2 Sk_ sij dek_) (2.19)

The hydrostatic state of stress, of the order of yield stress, does not

produce yielding; and it is related to volumetric strain through elastic law

_kk = (3k + 2_) Ekk (2.20)

or

d _kk = (3 k + 2_) d Ckk (2.21)

where k and _ are Lama constants.

1 and adding it to (2.19) and by considering
Multiplying (2.21) by _ 5ij

the relations between stress or strain tensor with its devistoric components,

we obtain

d Tij = 2_deij + k dTkk 5ij - 2__.___
2k 2

Sk _ sij dCk_ (2.22)
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Note that:

1
Ski d ekl = Ski (dekl - dE %1) = Skl dEklmm (2 23)

Finally,

d Tij = EijkldEkl ;
9xl 9x9 9xl

(2.24)

where

2_
s. (2.25)

Eijkl = 2_ 5ik 5jl +k 5ij 5kl 2k 2 mj Skl

k and _ can be expressed in terms of Young's modulus E and Poisson's ratio as

VE E

k = (l+V):_ (l-2V) ' _ - 2(1+V) (2.26)

Substitution of (2.26) into (2.25), gives

E V

Eijkl = _ (Sik 5jl + l-2V

1

5ij 5kl 2k 2 sij Skl) (2.27)

Generalized Plane Stress

The general expression (2.24) can be specialized for the state of plane

stress. For this purpose assume that Ti3=0 , dTi3=0, where i = 1,2,3 and

further that dgl3 = dE23=0 , and

d_33 = E33r5 dET5 + E3333 dE33=0. _,5= 1,2.
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Then

":E33Y5

- d£y5
d ¢33 E3333

(2.28)

d T_ = E_5 d Ey5 + E0_33 d E33 where _,_= 1,2
(2.29)

Substitution of (2.28) into (2.29) gives

d _'a_ = EC_y5 d Ey5
0_,_5,y,5 = 1,2 (2.30)

and

%_Y5 = E_Y5 E3333 - EC_33 E33Y5 (2.31)
E3333

For the principal directions of stress increment, where the principal

directions of stresses do not change during loading, the basic relation for

the generalized plane stress can be written down as

I i 1d _ii I Eiiii Eli22

_ =

I _]2211 F'2222

d _22 j

or symbolic.lly as Ida} : [E] t d e_

2xl 2x2 2xl

d E
11

d e22

(2.32)
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Whe re

F'IIII = E

2

s22

2 2

Sll + s22 + 2V Sll s22

EI122 = E2211 = - E

Sll s22

2 2

Sll + s22 + 2V Sll s22

E2222 = E

2 (2.33)
Sll

2 2

Sll + s22 + 2V Sll s22

In this case,

2 1 2 1

Sll = _ (Tll - _ T22) ; s22 = _ (T22 - _ TII) (2.34)

Note that the [E] matrix in (2.32) is singular. This is also true in the

general case of (2.24). This follows from the fact that the stress increments

d T.. are linearly dependent as can be seen from (2.17), since
iJ

s.. d s.. = s.. d _.. = 0 (2.35)
ij ij ij ij

Therefore, we can only specify strain increments and solve for the

stress increments; however, the reverse is not possible. This is obvious

for a uniaxial stress condition for a perfectly plastic solid by noting its

stress-strain diagram.
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The expression (2.24) is valid for loading when

_f

d Tij = s" • d T" • = 0ij ij
ij

(2.36)

That is when the point in the stress space moves on the yield surface

or stays on it. Stated otherwise,

(i) (2)
f = f = 0 (2.37)

But, if

_f

d _.._J
ij

<0

unloading takes place, and instead of (2.24) the Hooke's law must be used, i.e.,

d TII

d T22

d ell

d e22

(2.38)

It is interesting to note, that for a strain increment vector, which

is in the direction of normal to the yield surface, the stress increment

vector vanishes. Therefore, if for a stress point located on the yield

surface, we resolve the strain increment vector into two components -- tangent

and perpendicular to the yield surface, see Fig. 2 -- it is only necessary to

retain the tangential component in the computation of stress increment. Hence,
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(2.39)

This property is preserved for the generalized plane stress case dis-

cussed earlier. In this case both {dT} and _dE T} are tangent to the

yield curve. This indicates that the transformation [El only stretches

_dE l with 8 proper scale.

The stress-strain relations (2.32) are strictly true for infinitesimal

increments. Here it is necessary to establish relations for finite increments.

Thus, the infinitesimal increments are to be integrated within a small interval.

Prager [34] and Hodge suggested the concept of piecewise linear yield condition.

It enables one to integrate stress-strain relations locally while preserving

the incremental characteristics in the total. Another approach has been

employed here.

The equations (2.32) essentially specify an initial value problem. For

a finite increment of strain, the stress increment should move along the yield

curve as from A to C shown in Fig. 3. By following a tangent at A, one reaches

an incorrect point B. However, by projecting point B back to the yield curve

point C is located. This point C is taken as the new state of stress from

which the next step in calculations is made. In Fig. 3 the locations of points

B and C are greatly exaggerated and the result of example I, Fig. 14 indicates

that for a relatively small increment of stress the distance between such

• See footnote on pp. 9.
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points are small. Therefore the error committed in this process is not very

significant. As the first approximation the initial state of stress in each

increment can be used to determine the [El matrix. Iteration procedures or

the techniques of numerical integration such as the Runge-Kutta or Euler's

modified method was employed to compare the results found with the first

approximation°

A difficulty arises in the transition zone, when the point initially

located inside the yield surface reaches the surface during the increment of

loading. In this process the associated deformation contains a purely elastic

part. During deformation the point moves elastically within the yield surface

until it just touches the surface. When the point reaches the yield surface

the plastic part of the deformation occurs. If the total deformation produced

during sn increment of loading is given, equation (2.38) can be used to

determine the corresponding stress increment. Depending on the relative dis-

tance of the initial and final state of stress with respect to the yield

curve, point D and E, of Fig. 3, the point closer to the yield surface, point

E in this figure, is chosen for a radial approximation° The intersection of

the radius vector with the yield surface, F in Fig. 3 is taken ms the point

of the initiation of yielding. Strain increment associated with DF is obtained

using (2.38). It is subtracted from the given strain increment to find the

strain associated with the elastic-plastic deformation. The remainder of

the procedure follows as before.

* See for example Collatz, L., "The Numerical Treatment of Differential

Equations." pp. 53-61, Springer-Verlag, 1960.
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2.4.2 Elastic-Plastic Strain Hardening Solids

From the observations of the behavior of hardening materials in uni-

axial and biaxial tests, it is known that during plastic deformation the

yield surface is continuously changing in size and shape.

Isotropic hardening (see Fig. 4a), which at higher stresses exhibits

uniform expansion of the initial yield surface, is the most widely used law

to describe hardening. Thus, the yield surface for initially isotropic
L

materials depends on a single parameter _ and may be written as

f = g (J2' J3 ) - _ = 0 (2.40)

where J2' J3 are the second and third invariants of stress deviator, and

is the hardening parameter which describes the strain history. Two measures

of hardening for a are frequently used. The first approach suggests that

the degree of hardening is a function only of the total plastic work, and is

*
otherwise independent of the strain path.

p ij ij (2.41)

where W is positive definite, since plastic deformation is an irreversible
P

process. The second approach states that the so-called equivalent plastic

strain increment

_ 1/2

d P= p. de p.. ]z3 z3
(2.42)

Hill, R., "The Mathematical _q_eoi-y u.,.-_Plas*_^_÷.. " -- o_-_q, _n_a

Clarendon Press, 1950.
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integrated over the strain path provides a measure of the plastic deformation

That is

_ = _ (f d EP ).
(_.43)

As pointed out by Hill , the above two concepts are equivalent for the

materials obeying von Mises yield condition° Hill's remark wss later

generalized by Bland , showing that for any g to be a homogeneous polynomial

of degree n, and have regular regimes of yield surface, the above property

holds true, if, and only if, g is linear or quadratic function in the

principal components of stress. Certain restrictions on the coefficients are

imposed in the quadratic case.

For proportional loading, if the strain ratios remain constant, (2.43)

can be integrated

1/2

P P ] (2.44a)P = f d E p = [ eij eij

= _ (e P) (2.44b)

Expression (2.44b) was checked by some investigators , with the experimental

results, where the stress ratios were not constant. In the tests on mild

steel and annealed copper, agreements to within 5 percent are reported.

* ibid

**Bland, D.R., "The Two Measures of Work-Hardening," Proc. 9th Int. Congr.

Appl. Mech. (Brussels, 1956), Vol. 8_ pp. 45-50, 1957.

***See Hill, R., footnote on pp. 29.
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The concept of isotropic hardening does not account for Bauschinger

effect. Actually, it predicts a negative Bauschinger effect. Therefore,

isotropic hardening would predict erroneous results in problems involving

unloading followed by reloading along some new path. To include the

Bauschinger effect, a hardening rule was suggested by Prager*, which assumes

a rigid translation of the initial yield surface (see Fig. 4b). Prager

employed a kinematical model to describe this hardening rule. For this reason

it is termed "kinematic hardening." This hardening rule can be represented

mathematically by

k2
f(_ij - _ij ) = F(_ij - _ij ) - = 0 (2.45)

where f (_ij) = 0 is the initial yield surface, and _ij is a tensor represent-

ing the total translation of the center of the initial yield surface. Prager

suggested that the yield surface be translated in the direction of the normal

to the yield surface for any increment of strain.

d_ij = cd EP• ij (2.46)

where c is generally assumed to be constant. In such a case the process is

called linear hardening. Shortly after Prager's proposal it was recognized

that the properties of preserving the shape, and of pure translation of the

*Prager, W., "The Theory of Plasticity: A Survey of Recent Achievements,"

(Jame Clayton Lecture) Proc. Inst. Mech. Eng. Vol. 169, pp. 41-57, 1955.
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yield surface along s normal, do not generally remain invariant if the nine

dimensional stress space is degenerated into subspaces. To resolve this incon-

sistency Ziegler* suggested to replace (2.46) by

d _.. = (T.. - _..) d_ (2.47)
iJ 1J iJ

Further suggestions such ss piecewise linear yield conditions, which

accomodate both translation and expansion of the yield surface (see Fig. 4d),

and the concept of yield corner stating that the yield surface changes only

locally (see Fig. 4c), have also been advanced. Numerous tests have been

conducted to check these theories, but no definite conclusions have been

reached so far.

After considering the several possibilities of a constitutive law,

isotropic hardening was adopted in this report. The material is assumed to

Then, in equation (2.40) the function gobey von Mises' yield condition.

becomes

g = J2 (2.48)

Assuming the validity of (2.44b) for non-radial loading; and sub-

stituting (2.44b) and (2.48) into (2.40), we obtain

f = J2 - _; (_ p) = 0
(2.49)

Ziegler, H., "A Modification of Prager's Hardening Rule," Quant. Appl.

Math. Vol. 17, pp. 515-65, 1959.
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The unknown function • can be determined from a simple experiment;

namely, uniaxial tension or simple shear. The expression (2.49) has been

sometimes called the J2 - theory and is frequency expressed as

: H (_ P) (2.50)

where,

1/2

_ = _J-2_ [ sij sij ] = 3_2 (2.51)

is the so-called effective stress.

Now, recall (2.9) and (2.13) which gives

d E p =d ¢ s
zj zj

(2.52)

2 ¢.p.
To determine d_ multiply (2.52) by _ d IJ

and (2,51) to obtain

2

(d _P) 2 ¢.P d _ p ) 2
= _ (d zj ij = 3 (d_)2 sij sij =

3 d _P
d ¢ =-

2 _"

and sum, then note (2.42)

2 _ d ,)2(§

(2.53)

If the curve of _ - E p is .given as in (2.50), then

d _ p dH
-- H I

dH
where H' - is the slope of J2 curve.- p

d

into (2.53), we obtain

(2.54)

Whence upon substituting (2.54)
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d ¢ -
3 i d_ 3 1 i

2 H' 5 =_ H--r
(2.55)

Also note that

J2 2 5_
Sij = _ =3 _

zj 1j

(2.56)

Substitute (2.55) and (2.56) into (2.52) to obtain

p 1 _ _

d eij = _, _ _ d "rk_
(2.57)

This relation is similar to expression (2.10) proposed by Drucker. It

can he re-cast into another form:

d e p 3 1 sij - Sk_ _ d
ij - 2 H' s s Tk_

mn mn

(2.58)

If the data for uniaxial tension test are used to define H', it is easily

seen that

1 1 1

_-r = E E
t

(2.59)

where E t is the tangent modulus, and E the Young's modulus. If the data

from pure shear test are used, then to define H' we have

i i i i

H' -3 ( _t _ )
(2.60)
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where _t is the tangent modulus in shear for _ -_ diagram, and _ is the elastic

shear modulus.

For H' to be invariant, the comparison of (2.59) and (2.60) leads to the

following requirement:

3 1 l-2V

Et Wt E

(2.61)

Expression (2.61) imposes a restriction on E t and _t' which generally does

not hold true for all materials.

Now, returning to Prandtl-Reuss equation (2.7) and substituting for

dEi_ from (2.58), and considering the uniaxial tension test as the basis, we

obtain

S . .

(1_ _ ! ) 1J Skz_ d (2 62)l+V V 3

d ¢ij - E d _ij - E d _kk 5ij + 2 E t E Smn Smn _k_ "

Or

d eij = Sijkl d Tk_ (2.63)

where

3 1 1 sij Skg
I+V V 5. + ( ) (2.64)

Sijk_ - E 5ik 5j_ - _ lj 5k_ 2 E t E s smn mn

Symbolically we can express (2.63) in matrix form as

{ de } = IS] _ dT} (2.65)
9xl 9x9 9xl
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Specializing (2.63) for the case of plane stress in principal stresses

and following the similar procedures for elastic-perfectly plastic solids,

we obtain

d Ell

d £22

§IIii

211

SI122

2222

d _iI

d T22

(2.66)

Where,

- i i I

Sllll = E + ( E E )
t

- - V

Sl122 = 82211 - E + (

- I I i )
$2222 = E + (. E E

t

1

(_11 - 2 %22 )

- 2

i i (%11
)

E t E

1 2

(T22 - _ _11 )

-2

2

i %22) (.c22 I- _ - _ _ll)

-2
(2.67)

Inversion of (2.66) gives

d TII

Ii IIII

E2211.

--IEI122

E2222

d Ell

(2.68)

d _22 d E22
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Where

ELI11 = E

3
+ -

4

2

s 2

2 2

s I - s I s 2 + s 2

2

(l_V 2) _ + 3 Sl
4 2

s 1

2
+2V s

1 s2 + s2

2

- s I s2 + s2

1122

E2222 = E

= E2211 = E

(1-v2) _ +
4

s I s 2

2 2

s I - s I s2 + s2

3(1-v2) _ + -
4

2 2

s I + 2V s I s2 + s2

2 2

s I - s I s 2 + s2

2
s
1

2 2

s I - s I s2 + s 2

2 2

s I + 2V s I s2 + s 2

2 2

s I - s I s2 + s2

(2.69)

where

Et 2 1 2 1

- E_Et ' s 1 = _ (Tll- _ T22)' s 2 = _ (T22- _ Tll)

-2 2 2

= "rll - 'rll T22 + z22 (2.70)

It is easily seen that if E t tends, to zero expressions (2.69) will be

reduced to (2.33).

Stress-strain relations (2.32) and (2.68) will be employed to describe

the material properties of any annular layer during loading. During unloading,
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apply relations (2.38). Since in the computation processes we are dealing

with finite increment of loading, (2.32) and (2.68) are not strictly valid.

As mentioned earlier, however, the errors introduced are not very significant

for small increments.

Although the examples which are given in this report have been based

on (2.32) and (2.68) the developed procedures are perfectly general and any

other constitutive relations can be employed by properly defining the [E l

matrix. Should necessity arise, experimental data may be used directly.

2.5 Stress Resultants

To determine stress-resultant increments, we proceed as follows:

Takethe middle plane as the plane of reference, and divide the plate

into s number of layers symmetrically arranged with respect to the middle

plane (Fig. 5). Then upon assigning the material properties to each layer,

we can formulate the expression for _ZIM_ as
%1

n n

_, _k hk _ _hk [E(k)] _A¢} zdz (2.71)

k=l -i k=l k-i

where IZ_M I contains both the radial and the tangential moments, i.e.,

Z_ 2 2_I o
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Upon substituting from (2.4), and integrating, we obtain

where, with h = o,
o

n

[D] = g
k=l

[E (k) ] (hk3 - h3_l )

(2.72)

(2.73)

If the layers are taken of equal thickness

h

h k • == k h , h 1 2n (2.74)

and

n

h 3 _ [E (k) k 2[D] - 1--_3 ] (3 - 3 k+l)
2x2

k=l

(2.75)

here,

[D]

DII

D
21
°121
D22

, where D12 = D21

This equation together with (2.72) yields the following results:

(2.76)

ZlM = Z_M 1 = - D 1 hJ< Z_Ker 1 r - DI2

ZXMe Z_M2 D21 ZkK ZlKe= = - r - D22

(2.77)



4O

2.6 Governing Differential Equation

Substitute (2.77) into the differential equation of equilibrium (2.3),

and define curvatures as given by (2.5). Then the governing differential

equation becomes

IV 2 III 1 " 1
DII _w + -- D w - --r ii 2 D22 _w + --_

r r
D22 LXw' = A p(r) (2.78)

Dividing by DII ,

_ D22

DII

and letting

(2.79)

iv 2 AwlII _)2 " 1 Ap(r)Aw + - - ( (Aw - - Aw') - (2.80)
r r DII

where primes denote differentiation with respect to r.

The solution of part of homogeneous (2.80) has three different forms

depending on the value of 2__

(a) For _= I

2 2
/kw = s 1 + a 2 r + a 3 _n r + a 4 r

(b) _= 0

2
Aw = a I + a 2 r + a 3 r + a 4 r _n r

(c) 1,

_n r

l+A 2
Aw = aI r + a 2 r + a 3 r + a4

(2.81)

(2.82)

(2.83)

Case (b) is not frequently encountered.
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2.7 Stiffness Matrix For an Annular Element

In this section the relations between nodal ring forces applied at the

edges of an annular element, and their corresponding nodal ring displacement

are established. Here the term "nodal ring force" includes both transverse

force and moment. Similarly, the "nodal ring displacement" implies both

displacement and rotation.

In order to set up the element stiffness matrix, two frequently en-

countered cases _= I and A_ l, _ O will be considered.

Case I A= 1

From expression (2.81) we can obtain all nodal forces and displacements

in terms of a. , i = 1,2,3,4.
1

Thus,

Increment of rotation:

-i

/k co = /k w' = 2 82r + B3r

Increment of radial curvature :

-2

/k K : /k w" = 2a 2 - s__ rr

Increment of tangential curvature:

1 -2

A gO =--r _ w' = 2 s 2 + a 3 r

+ a4r (2 gn r + i) (2.84)

+ a 4 (2 £n r + 3) (2.85)

+ a 4 (2 _n r + i) (2.86)
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Substitution of (2.85) and (2.86) into (2.77) yields moments

AM
r

-2

= - 2 a 2 (DII + DI2) - a3 (-DII + DI2) r

- a 4 (DII (3 + 2 In r) + DI2 (I + 2 In r)

(2.87)

-2

A M e = - 2 a2 (DII + DI2 ) + a3 (-DII + DI2 ) r

-a 4 [DII (1+2 In r) + DI2 (3 + 2 In r) ]

(2.88)

Finally, substitution of (2.87) and (2.88) into (2.1) gives

-i

Q = 4 a 4 Dll r (2.89)

Next, consider the annular element shown in Fig. 6 with all quantities

having positive sense. Nodal ring forces[_S_an be defined in terms of

ai, i = 1,2,3,4, as

4xl
4x4 4xl

(2.90)

where

a Qi

i
_M

r

QJ

A M j
r

al1a 2

a4

(2.91)
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The elements of [Bs] are given in Appendix A. Note that because of

the change of sign convention from that of strength of material shown in Fig.

1, to the one shown in Fig. 6, the following modification should be made:

J
L_M (r.) = - A M

r j r

Q (r.) = - A QJ
J

(2.92)

ai ,

Similarly, nodal ring displacements can be expressed in terms of

i = 1,2,3,4, as

4xl 4x4 4xl
(2.93)

where, _ a t

_A v} =

is defined as before in (2.91), and

A w i

A i

wj

A _J

i,j
, A i,j = (A w') (2.94)

The matrix [BD] is given in Appendix A. To evaluate the stiffness matrix,

solve (2.93) for _a} , and substitute in (2.90). Thus

: vj
4xl 4x4 4xl

(2.95)
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l_s_
4xl

-I

-- [Bs] [Bv]_ v_ = [k]
4x4 4x4 4xl

(2.96)

where [k]

[k]

4x4

is the element stiffness matrix, and

-i

= [B s ] [B v ]

4x4 4x4

(2.97)

Case II,A_ O, 1

In this case nodal forces and displacements can be derived from

expression (2.83), similar to that of Case I:

Increment of rotation:

A _ = A W' = a I (I +A_) r + a 2 (i -A) r + 2 a3r (2.98)

Increments of curvatures

r_- -A_ -i
Kr=Aw''-- aI (Z +A) 1 _ a2_/l(l_A ) r + 2%

1 _w a (l+A) rA-1Ke r 1 + a2 (l-A) r-ji-1= - , = + 2a 3

(2.99)

Moments -- Substitute (2.99) into (2.77) to get

M : -a (l+A) dk. A-1
r 1 II+DI2) r -a 2

-_/_-I
(l-j_ (-J_DII+DI2)r

-2a 3 (DII+DI2) (2.100)
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and

A M e :-a I (l+/k) (D22+J_.D12)r/_-i + a 2 (1-__) (-D22+AD12) r-A-1

-2a 3 (DI2+D22) (2. I01)

Utilizing the equilibrium equation (2.1), upon substitution into it of

(2.100) and (2.101), we obtain

-I
A q = 2 a__ (DII-D22) _ r (2.102)

Following the same steps as shown in (2.90) through (2.96), we obtain

the stiffness matrix for Case If. Formally, the equations are the same as

before,

4xl 4x4 4xl

(2.96)

and

[k] = [Bs. ] [Bv]

4x4 4x4 4x4

-I

(2.97)

However, the matrices [Bs] and [Bv] for this case are different as can be

seen in Appendix B.

2.8 Stiffness Matrix for a Disc Element

The condition of axial symmetry, and the requirement that the load is

applied only at nodal rings require that _ Q for a disc element should vanish
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throughout (see Fig. 7). For such an element two cases of different A's

must again be recognized.

Case I A= 1

(i) Since _ w must be finite,

(2) Since A Q _ 0, a4 = 0

Therefore, as before,

2

w = a I + a2 r

a3 =0

(2.103)

& _ = A w' = 2 a 2 r (2.104)

Also

2

A _J 0 2rj a 2

[B v ]

[B]

0 2rj

1

-i I - _ rj

1

_ rj

2xl 2x2 2xl

(2.105)

(2.106)

(2.107)

& M = - 2 a 2 = & Mer (DII+DI2) (2. 108)
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AQ=O (2. I09)

Hence,

A MrJ O0 2
(2.1lO)

That is

[Bs]

2x2
I° °10 2(DII+DI2

(2.111) c_

Theref ore

-i 0 0

[k] = [Bs] _ ] =

2x2 2x2 2x2 0 (DII+DI2) rj _I (2.112)c_

The Case II, A_ I,A_ 0 is not encountered in this problem since

the ratio of radial to tangential moment increment remains constant (i.e.,

unity). Therefore, this case will not be discussed here.

Note that stiffness matrices developed for annular and disc elements

are singular. This condition is due to the fact that the elements of vector

AS_ must satisfy the condition of equilibrium, end are therefore not

linearly independent.



48

2.9 Plate Stiffness Matrix

The element stiffness matrices developed in Articles 2.7 and 2.8 can be

easily assembled to obtain the plate stiffness matrix, by considering the

conditions of equilibrium, and compatibility at nodal rings.

Consider the n-th element, and partition its stiffness matrix as shown

I

n I k n
kii 11 iy

i
...... I

I
i

kj ni I k n, jjI

A v i
n

4xl 4x4 4xl

(2.111)

At a nodal ring, where the n_h and the (n+l)-th elements meet, the

equilibrium equations are

{_ Rn} = {A sJ } + [Z_ Bi+l I.

2xl 2xl 2xl

(2.112)

that

Compatibility of deflection and slope at the same nodal ring require

2xl 2xl 2xl

(2. 113)
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whe re

_A Rnl

From (2.111) it is seen that

is plate (external) nodal ring force.

is plate nodal ring displacement

• n n

IA SnJ } : [kji ] {A Vi}n + [kjj] {A v j}n (2.114)

Similarly, for (n+l)-th element

(A Sni+l} = r n+l {A i _ n+l {A v jLk ii ] Vn+l} + Lkij ] n+l} (2.115)

Substitution of (2.114) and (2.115) into (2.112), and

(2.113), yields

consideration of

n n n+l _ n+l.

(A Rn} : [kji] {A rn_l}+ [kjj + kii ] { A rn} + [kij J _A rn+ I}

2xl 2x2 2xl 2x2 2xl 2x2 2xl

(2.116)

re,eating the above procedure for ell the elements, we obtain stiffness matrix

for the entire plate, which is a tri-diagonalized matrix of the assemblage.

This matrix can be schematically represented as follows:

(a) [K] =

2Nx2N

%
\

\
\
\

W_J

2Nxl 2Nx2N 2Nxl
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where N is the number of elements. Note that the stiffness matrix [K]

established here is singular. It is necessary, st this point, to impose the

boundary conditions, and to make the proper deletions in [K] in order to make

this matrix non-singular. Then, the remaining set of equations (2.117 b) csn

be solved for {A r} Having obtained _ r} , moments, curvatures,

and stresses can be found using appropriate expressions estsblished before.

Since, in this report, nodal ring forces per unit length were taken,

the stiffness matrices developed here are not symmetric. It is easy to show,

however, that they satisfy Betti's law.

2.10 Transformation of Distributed Transverse Loads on the Element to Nodal

Ring Forces

Both tributary area and consistent equivalent nodal ring forces were

used in the solution of problems.

The tributary area approach simply concentrates the distributed loads

at nodal ring junctures, qhe distributed loads extending half-way between the

neighboring elements are included in the nodal load.

Consistent equivalent nodal ring forces are derived by equating the

virtual work of transverse loads on the element through the given displacement

pattern to virtual work of their corresponding nodal ring forces. This is

briefly explained below.

Expressions (2.81) or (2.83) can be written as follows:

T

_ W = _ S} { Cm(r)} , m = 1,2,3,4 (2.118)

ix4 4xl

*Archer, J.S., "Consistent Matrix Formulations for Structural Analysis Using

Finite-Element Techniques." AIAA Jour. Vol. 3, No. 10, pp. 1910-1918, Oct., 1965.
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Recalling (2.93), we also have

EBvJ (2.93)

Note that a bar over the symbols in the above equations is used to

designate the quantities associated with the virtual displacements.

The work of a distributed transverse load _ p(r) on the element through

the virtual displacement _ w is

A W = A p(r) A w (r) 2_rdr = 2_ a A P*m (2. 119)
P r.

1

where

, fr{A p m} = .3 A p(r) era(r) rdr

r
i

m = 1,2,3,4 (2.120)

On the other hand, the work of equivalent (consistent) nodal ring forces

through the virtual displacement {_ v} is given as

T { 2_ri_Pi I { t T T { ri APi t_ : {A;} : 2_ ; _Bv] (2.121)
p _ . 2_ rjz_j r. A p.J J

Equating (2.119) and (2.121), and considering that the generalized

coordinates _a_ are linearly independent, we get
t j

4xl 4x4 4xl

(2.122)
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1

where _ P_ are the forces per unit length.

Hsving established (2.122), the nodal ring forces are obtained from the

following relation

t n nt + _r n+l z_pn+l)
3 i i J {/k pn_/X Rn} = rj A P" r = j_ + _/_ pn+l}

n

2xl 2xl 2xl
(2.123)

where,

r
n

n n+l
r. = r.

3 i

In (2.120) any distribution of _ p(r) over the element can be specified.

It is also possible to develop expressions for linear or parabolic distribution

of transverse load acting on the element, and any distribution can then be

approximated by a linear or a parabolic curve. The linear approximation was

investigstion, and the sppropriate expressions for _ p*} areused in this

given in Appendix C.

The 8hove procedure can be used to transform transverse ring load on sn

element to nodsl ring force as well. Perhaps, however, it is preferrsble in

such cases to take the applied ring losd as the nodal ring load.

A comparison of the results using the two approaches discussed above

of transforming the transverse distributed forces to nodal ring forces shows

that the difference is not very significsnt for the small size element.
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2.11 General Remarks

The procedure employed in the analysis of plates described in this

report can be outlined as follows: The plate is assumed to be initially free

from residual stresses. The first increment of loading is applied and the

magnitude of the load increased so that yielding just begins at some points

within the plate. The loadings is then continued in small load increments.

For each increment, after the Eqns. (2.117b) have been solved for _ _ r)

curvatures, strain increments, and stress increments are determined successively.

The new state of stress is found, and EEl ° matrices are computed. For the

first approximation [E_ ° are taken to be the material properties for the next

increment. In a more refined procedure, Euler's modified method is utilized.

That is, the [E] O is utilized to calculate _ r) for the same increment.

!
The new [E_ matrices are established, and the average of these two is taken

to be representative of the material properties for the increment in questions.

Depending on the magnitude of the load increment, this modification was

relatively of more significance for perfectly plastic materials than those

exhibiting hardening. It was observed that the first approximation was satis-

factory for a relatively small loading increment and hardening materials.

The influence of the magnitude of the loading increments was studied, and some

results are shown in the next chapter.

A computational difficulty arises at the instant of initiation of the

plastificatiOn of an element. If the radial and tangential stress increments

differ slightly, the material exhibits a slight anisotropy after exceeding the
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A
elastic limit. The corresponding Ji changes from unity to s value very

unity. Therefore, the matrices [Bv]-I and [k] become ill-conditioned.
close to

To overcome this difficulty two approaches have been used. The first makes

use of double precision computation procedure_ which retains 16 significant

digits in the analysis. The second consisted of expanding the elements of

[Bv]-I and [k] matrices in terms of (l-A) , clearing fractions, and treating

the ill-conditioning factors separately. The expanded forms of elements of

these matrices are given in Appendix D.
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III. APPLICATIONS

This chapter consists of two parts. In the first part several examples

are presented; in the second, s description of computer programs is given.

3.1 Examples

Eleven examples have been prepared to illustrate the main features, and

to test the accuracy of the method of solution developed for circular plates

in Chapter II.

Except for Example II, the same size plate is used throughout to

facilitate comparisons for different boundary conditions and also for different

material properties. The total magnitude of load applied to the plate was

controlled by the deflection of the plate. It is believed that in using the

small deformation theory of plates a total central deflection of up to 0.3

the plate thickness does not induce appreciable membrane action. The developed

solution is applicable to relatively thick circular plates.
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Example 1

The behavior of the simply supported plate shown in Fig. 8 under uniformly

distributed load is analyzed.

h = 1.0 in.

The material properties are:

d = 20. 0 in.

L

Fig. 8

E = 107 psi, V = 0.24. The yield stress

in uniaxial tension G = 16 ksi. The material'is elastic perfectly plastic.
Y

The number of elements and layers is 20 and 40, respectively. Load

increments of 5 and 4 psi are used.

The results are plotted in Fig. 9 to 14. Comparison with a solution due

to V.V. Sokolovskii who used the deformation law of plasticity is given in Fig.

15.

Example 2

The same plate as in example 1 but with clamped outer support is

studied.

The numbers of elements and layers are 20 and 40, respectively.

increments of l0 psi are used.

Results are plotted in Fig. 16 to 19.

Load
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Example 3

The purpose of this example is to study the effect of history of external

loading on the behavior of the simply supported elastic-perfectly plastic plate.

The plate is exactly the same as in Example 1 except that V = 0.3.

First the plate is loaded as shown in Fig. 20-a to obtain the maximum

possible elastic deformation. Thereafter, two different schemes of loading are

used: In the loading sequence I, triangular increments of load are added to

reach the final load of Fig. 20-d. In the loading sequence 2, load increments

are added from r = 3.75 in. to the outer edge of the plate until the final load

of Fig. 20-d is achieved.

Results are plotted in Figs. 21 and 22.

Fig. 20-a

First Loading Step for

both schemes of loading

/ l \
/ l \

/ I ! \\

Fig. 20-c

Typical Load Increment in

Loading Sequence 2

Fig. 20-b

Increments of load in Loading

Sequence 1

7 5"
I " I

l _=330psl

Fig. 20-d

Final Load
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Example 4

The purpose of this example is to study the effect of load history on

the behavior of clamped elastic-perfectly plastic plate.

The plate is exactly the same as in Example 1 except that v = 0.3

After the first step of loading (Fig. 23-a) two different loading

schemes are used to reach finally the load in Fig. 23-d. In loading sequence

1, typical load increments are ss in Fig. 23-b. In the loading sequence 2

load increments are added from r = 4.75 in. to the boundary of the plate

(Fig. 23-c).

The results are plotted in Fig. 24 to 26.

20 in,

Fig. 23-a

First Loading Step

Fig. 23-c
Increment of Load in

Loading Sequence 2

Fig. 23-b

Increment of Load in

Loading Sequence !

_460 psi.

Fig. 23-d
Final Load
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Example 5

The purpose of this example is to show the effect of the magnitude of

load increments on the moments and deflections. The numerical experiments are

on 0.75 x 16 in. Simply supported elastic-perfectly plastic plates with E =

10.6 psi and _ = 16,000 psi. The numbers of elements 8nd layers are 20 8nd
Y

40, respectively. It should be noted thst these results were obtained before

including the Euler modification to take into 8ccount the variation of msterisl

properties within a loading step.
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Example 6

A Ix20 in. simply supported plate is subjected to uniformly distributed

load. The material property of the plate is shown in Fig. 30. V = 0.33.

2 @ IO,n

_, lOin ._l_J6 @ 0.5 in_

Fig. 29

_"(psl)

16XlO 3

Fig. 30

Uniaxial Stress-Strain

diagram

18 elements are used as indicated in Fig. 29. The thickness is

divided into 40 layers. Load increments of 15 and i0 psi are used.

The results are plotted in Figs. 31 to 35.
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Example 7

A clamped plste of the same size and material property as in Exsmple

6 is subjected to uniformly distributed load.

lOin iO('_ 0.Sin

I

Fig. 36

There are 40 layers; and 18 elements which are distributed as shown

in Fig. 36. Load increments of 25 and 20 psi are used.

Results are plotted in Figs. 37 to 40.
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Example 8

A simply supported plate exactly the same as that in Example 6 except

with the uniaxial stress-strain diagram shown in Fig. 46 is subjected to

uniformly distributed load.

The Et-o diagram of the stress-strain curve is shown in Fig. 41. The

reason for using such a stress-strain curve is that it has an initial linear

elastic part and also it is quite easy to modify the two other linear parts

of the Et-o diagram to obtain different shapes of the stress strain diagram.

The results are plotted in Figs. 42 to 46.

E

JOxlO6ps,

4X I0 6 --

0.8 - I I
16 19 28 (7" (Ksi)

Fig. 41

Example 9

A clamped plate of same geometrical and material properties as that

in Example 8 is subjected to uniformly distributed load.

Results are plotted in Fig. 47 to 50.
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Example I0

The purpose of this example is to compare the results of the elastic-

perfectly plastic plate solution of Example 1 with a solution for a plate

with hardening material having uniaxial stress-strain diagram of Fig. 51.

Such a diagram closely approximates that of elastic-perfectly plastic material.

The number of elements, layers and magnitude of load increments are

the same as in Example I.

Results are plotted in Fig. 52 to 55.

_r (Ks,

16 'E t :2----_I05 psl

Fig. 51
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Example ii

The simply supported plate shown in Fig. 56 is subjected to uniformly

distributed load.

0.75 in

P

16in -J!

t_
Fig. 56

The material properties are tabulated in Table 1 (from Ref. 48 )

The plate is divided into 16 elements and 40 layers. Load increments

of 40, 20, and I0 psi are used.

The results are compared with V. Lackman's solution in Fig. 57 and 58.

Table 1

stress (psi)

1

16,200

16,250

17,500

20,000

22 500

25,000

27,500

30,000

32,500

-6
E t x I0 (psi)

i0 600

l0 600

i0 599

i0 550

i0 375

9 925

9 000

7 150

3 825

1 800
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3-2. Description of Programs

Two computer programs have been prepsred, in Fortran IV language, for

the solution of clamped and simply-supported circular plates subject to axi-

symmetric loading. One is for elastic-perfectly plastic material and the

other for hardening material. The general procedure of solution is basically

the same in both cases, although there are differences in details due to

limitations in numerical accuracy of solution and inherent difference in

material properties. A discussion on the computation problems and consideration

of the variation of material property within each step of loading is given in

the appendices E and F. The concise flow diagrams of the msin program routines

are presented in Appendix G. A brief description of the program follows.

(l-a) Elastic Perfectly Plsstic Analysis of Circular Plates (EPPACP)

This routine is for matrix solution of elastic perfectly plastic

circular plate. Presently 8 30 element 60 layer plate can be handled but by

decreasing the number of layers up to 35 elements or more can be used. Nodal

ring loads in this routine are tributary.

(l-b) Formation of Average Material Property Functions (AMAFUN)

The functions of this subroutine is to form the average material property

function within each step of loading.

(l-c) Formation of Initial Material Property Functions (IMAFUN)

In this subroutine the initial material properties for the next step

of external load are calculated.
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(2-a) Elastic Plastic Analysis of Circular Plates (EPACP)

This routine is for matrix solution of circular plates of hardening

material. It is s double precision program. The number of elements and

layers which is presently handled by this routine is 20 and 40, respectively.

Other combinations of elements and layers can be used.

(2-b) Equivalent Nodal Ring Load (ENRIL)

This double precision subroutine is used to find the consistent nodal

ring loads assuming linear variation of loads between the nodal rings. If

it is desired to use the program for isolated concentrated ring loads, this

subroutine should, be deleted from (EPACP).

(2-c) Formation of Material Property Functions (MATFUN)

In this subroutine both the average material property functions in

each step of load and the initial functions for the next increment of load

are computed. This subroutine is in double precision.
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IV. CONCLUSIONS

From the study of the exsmples in Chapter III as well as other observations,

the following conclusions were reached on the calculated behavior of elastic-

plastic circular plates.

The comparison of elastic and inelastic moments in Example 1 indicates

some re-distribution of moments in the inelastic state. This can also be seen

from the distribution of residual moments in all of the examples. The re-

distribution patterns are in general similar for elastic-perfectly plastic

and hardening material.

The stress paths in Fig. 14 indicate that the internal loading does not

progress proportionally once the elastic limit is exceeded. Therefore, the

deformation theory is not strictly applicable. However, results of Examples

3 and 4, which show the influence of different loading histories, indicate

that this effect does not contribute significantly to the general behavior

of the plate.

In Fig. 14 the small variation of the stress paths inside the yield

surface justifies the application of a correction based on s radial approxi-

mation explained in Art. 2.4.1. It can also be observed that when the increments

of external load are small, the distance between consecutive points of stress

paths on the yield surface is small enough to justify the tangential approxi-

mation for neutral loading explained in Art. 2.4.1.

The comparison between the central deflections of the simply supported

elastic-perfectly plastic plate as calculated in the present incremental
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appraoch and the deformation solution due to V.V. Sokolovsky [2J, Fig. 15,

indicates the close agreement of the two solutions for loads not far above

elastic limit. However, the incremental solution predicts greater deflections

near collapse load.

The results in Examples 3 and 4 indicate that moments and deflections

in the circular plate are affected very little by different loading histories

for the two different sequences of loading. However, the inelastic zones are

appreciably different nesr the boundary of the clamped plate.

From the results of Example S we conclude that as the magnitude of the

load increments in calculations decreases, the deflections of the elastic-

perfectly plastic plate increases. Figure 28 shows two groups of curves for

the convergence of central moments. The full line was obtained by integrating

the stress distribution across the depth of the plate. These moments, in

general, satisfy the yield condition. The dashed line was determined by

utilizing the stiffness matrix. The moments obtained in this manner satisfy

equilibrium, but may not satisfy the yield conditions. However, as the

magnitude of the load increments decreases they approach each other. These

results establish bounds on the moments. It appears that the average of the

two solutions is close to the correct one and can be taken as such. The fact

that the variations in moment and deflection in Fig. 27 and 28 are almost

linear can be used to advantage to predict the results when the size of load

increments approaches zero. The dependence of the moments and deflections on

the magnitude of load increments in hardening material varies with the hardening

rate and is relatively less significant.
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A comparison of the input data stress-strain diagrams, _ , £, for the

hardening materials with the one computed from the calculated state of strain

in the plate is presented in Figs. 35, 46, 55 for Examples 6, 8, I0. A good

agreement between the two curves is evident which indicates good accuracy and

convergence of the developed solution for the hardening material.

The results in Example 10 show that the solution for a hardening material

with very low hardening rate (Fig. 55) agrees well with that for a corresponding

elastic-perfectly plastic material. This is as could be expected intuitively.

Part of the small differences is due to the different level of accuracies in

the computer programs used for the two materials -- double precision for

hardening material and single precision for elastic-perfectly plastic material.

The comparison of the solution for hardening material presented in

Example ii with the one published by V. Lackman [48] indicates that for the

uniformly distributed load of 300 psi the deflections and stress distributions

along the depth of the plate are practically the same.

The variation of stresses along the depth of plates indicates that the

behavior of plates is not highly sensitive to the number of layers used in

calculations within a reasonable range. For example, for hardening material

of the type used in Example II results using 40 layers agreed well with those

of 20.
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Appendix A

Elements of [Bs] mstrix

A= 1

Z_M i

2_.
• J

BII BI2 BI3 BI4

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

8

1

a 2

a 3

s 4

-i

_Qi = 4 a 4 DII r

rim I = -2 82 (DII + DI2) -83 (-DII

-2

+ DI2) r

-a 4 [DII (2 _nr + 3) + DI2 (2 _nr + I)]

BII = 0

B21 = 0

B31 = 0

B41 =0

BI2 = 0

B22 = -2 (DI.1 + DI2)

B32 = 0

B42 = +2 (Dll + DI2)
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BI3 = 0

B23 =- (-DII

B33 = 0

-2

+ DI2) r.l

-2

B43 = + (- DII + DI2) rj

-i

BI4 = 4 DII r. 1

B24 = - DII (2 Inri + 3)-D12(2 _nr.+l)l

-i

B34 = - 4 DII r. J

B44 = + DII (2 _nr.j + 3) + DI2 (2 Inr.+l)j ,

Elements of [Bv] Mstrix

/_ W. "
1

Aw_
1

A W.

3

Aw'.
J

BII BI2 BI3 BI4

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

s 1

s 2

a 3

s4

where:

BII = 1

B21 = 0

B31 = 1

B41 = 0

2

B 1 = r.2 l

B22 = 2r. 1

2

B32 = r. J

B = 2r
42 j

BI3 = _nr. 1

-i

B23 = r i

B33 = Inr. J

-i

B43 = r.
J

2

BI4 = r i lnr. 1

B24 = r i (21nr. + i)1

2

B34 = rj lnr. J

B44 = rj(21nrj+l)



124

2 2

A w = a I + a 2 r + a 3 _nr + a 4 r _nr

-i

A w' = +2 a2r + a 3 r + s 4 r (2 _nr+l)

,, -2

A w = 2 a 2 - a 3 r + s 4 (2 _nr + 3)
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Appendix B

Elements of [Bv] Matrix

.._;_ O,A;_ i

'Awi [A w' i

A wj

BII BI2 BI3 BI4

B21 B22 B23 B24

B31 B32 B33 B34

_41 B42 B43 B44

a
i

a 2

a 3

a4

where :

l+k l-k 2

Bll = r. B12 = r. B13 : r.1 1 1

B21 (l+k)r k= i B22 = (l-k)rTk
i

l+k l-k

B31 = r. =r.j B32 j

B41 (l+k) r k.= j B42 = (l-k) r-k
3

B23 = 2r i

2

B33 = r.
J

B43 = 2rj

BI4 = 1

B24 = 0

B34 = 1

B44 = 0

l+k l-k 2

A w = a I r + a 2 r + a 3 r + a 4

A w' = al(l+k)rk + a2(l-k)r'-k + 2 a3r

A w" = alk(l+k)rk-I - a2k (l-h) r -(l+k) + 2a 3
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Elements of[B_Matrix

where

p

A Qi

I

Qj

AM.

Bll Bl2

= B21 B22

B31 B32

B41 B42

BII = 0

B21 = -(l+k)(kDll+Dl2)rki -I

B31 = 0

B41 = +(l+k)(kDll+Dl2)rk-Ij.

-I

BI3 = 2(DII-D22)r. 1

B23 = -2(Dll+D12)

-1

B33 = -2(DII-D22)rj

B43 = +2(DII+DI2)

BI3

B23

B33

B43

BI4

B24

B34

B44

a I

a 2

a 3

a4 J

BI2 = 0

B22 = -(l-k)(-kDll+Dl2)ri(l+k)

B32 = 0

B42=+(I-N)(-kDII+DI2 )r-(l+k)j

BI4 : 0

B24 : 0

B34 = 0

B44 = 0
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M1 = -Sl(l+_)(_Dll+Dl2) r _-l

-2s3(Dll+D12)

Ql = 2s3(Dll-D22)r-l

-s 2 (1-A)(-_Dll+DI2) r -(1+_)
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Appendix C

Transformation of distributed load to normal ring forces.

See Article 2.10.

r. Zi Pi}

1

rj Zi Pj

I
T

Zip. ,
v 1

, A Pm
r_irjAp (r) era(r)rdr

Linear spproximstion Ap(r) = Api +

ZiPJ - ZiPi

r. - r.

j 1

Case I A= 1

ZIPl = r. I 2 i
r. JAp(r) rdr = _ Ap i (r.j -ri2) + _ (Apj-APi) (rj2+rjri+r.2)1
1

_P2 1 4 4 1 4 3 2 2rj Zip(r) r3dr = _ ZiPi(r.
r. J -ri )+5(ziPJ-ZkPi)(r" _r. r.+r. r.j j i j z
1

3 4)+r .r. +r.
j z z

, /r i 2 1 2
ZIP3 = JJ Zip(r) _nr dr= 1 ZiPi(r'2_nr'-r2j J i _nri - 2- rj +_ r i )

r.
1

3

i [(rj2 ri+ri2 ) I r. r. ]
+ _ (zipj-zipi) +rj (_nr.j - _) +2n _r.l rj-ril
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r. 1 (rj4gnrj 4 1 4 1Zip4=* JAp(r) r3gnr dr = _ Api - ri _nri - 4 rj + _ r'4)i
"r.

1

5
r. r.

51 [(rj4 3 2 2 3+r.4) (_nr }) j i+ _- (_pj-Z_pi) +r. r +r. r. +r.r. - + _n --j i j l J I i j r.r.-r.i J I

Case II j_ 1,0

• 3+J_ Apj-Api r r i
, rj rl+J _ APi (r 3+j_ -r. ) + r.-r.

Apl = Z_p(r) rdr - 3+]_ J l 4+_. [ j I
r.

i

, / r. i-_ APiAp2 = JAp(r) r rdr = "3-_
r.

1

[ 4-J_ 4-_'

(r 3-jY r 3-_- Apj-APi _ rj - r i
j - i ) +-4-J_ L _.--_-_-_.

j i

Ap 3 = r. r2 1 4 4 1 4: - r.) + (Apj - Api) (r. +J Ap(r) rdr _ Api (rj i 5 J

r.
1

3 2 2 3 .4r. r. + r. r. + r. r. +r )
j I j l 3 i l

Ap 4 = 1 2
r. 1 2_r .2) + (Apj_APi) +r .r +r.2)J Ap(r) r dr = _ AP i (rj 1 g (rj j i 1

r.
1

For disc element

r. = 0
1

_Pi

_ Apj

_/IiI/iiii/ii////I III _pj

_____ _------
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Case I _L = 1

r

Ap(r) = APi + Apj _--
3

, frjAp m : < Ap(r)
0

¢ (r) rdr,
m m= I, 2.

Ap I = f 1, , rj Ap(r) r dr = 6
0

2

(Ap i + 2 Apj) r.J

, ; rj r3Ap 2 = ap(r) dr -
O

1 4

20 (APi + 4Apj) r.J
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Appendix D

Expanded form of [B] = [Bv] -1 matrix, case A_ 1, 0

B(I,I) = 2(I-Jk)-15
-l-Jr -I-_

[rj - r.z ]

-9%
B(I,2) = -(i-_) -I 5 r.

l

r. l+Jk- r. 1-J %. r.

E
• I'. 1

J z

Beta ]

B(1,3) = -B(I,I)

-I _JL r. l+jq r. 1-21
B(1,4) = -(1-jl) - 5 r. [(--_J) - (-5-z)

3 r. r.
x 3

-2 Beta ]

B(2,1) = 2(l+Jl) (1-J_) -1
-1+_

5 r.
1

Beta

9%
B(2,2) = (l-j_) -I 5 r.

1

r

r. i+_ _ (_!)
[ r.

r. J
1

1-]_

-2 Beta ]

B(2,3) = - B (2,1)

r. l+li r

B(2,4) = (i-Jr) -i 5 r -A. [ (__1) _ (_iJ)
3 r. r.

j z

1-sk r. I-A

+2  _2J)
r.

l

Beta ]

-I r. Jl r i/i

B(3,1) = (1+]%) (1-J_) -1 5 (r.r.) [ (--_J) - (_.) ]
IO r. .

z J

r. l+/k-

B(3,2) = (l-]i) -I 5 r -I. [ (-!I)
1 r.

J

-i + (1+_) Beta ]

B(3,3) = -B (3,1)

1
..... ,_ A _, _-_

J

r. 1+]%

"r.
1

r .

-1- (I+A) (-_J)
1

Beta ]
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B(4,1) = (1-.A.)

B(4,2) -- (1--A.)

B(4,3) = (I-.A.)

-I

-1

-1

B(4,4) = - (l-]i)

5

r. i+_

1-Y_) [ (_!) -1 ] - (i+_1r.
1

r. I-/% }
(--_J) Beta

r.
1

r.
i

r. l+J_ r. I-Y_
[ _ (_k) + 1 + (i+_) (-_)

r. r.
1 l

Beta ]

r. I+A

[ (_1 -1 ] + (1+Y_)2
J

Beta}

-1
r. l+J_

5 r. [ (__z)
J r.

J

-i + (I+A) Beta ]

Expanded form of [k] matrix, caseA# 1,0

k(1,1) = 2 (1+_)
-2 -i rjj_ r.]_

2 5 DII r. r. [ ( -- _ (1) ]
z j r. r.

z j

r. 1+/%

k(1,2) =2 (i+_) 5D11 r_ 2 [ (_)
J

-I + (l÷j_) Beta ]

k(l,3) = -k (1,1)

r

k(l,4) = 2 (I+Y_) 5 Dll(rirj)-i [ (J)
1

k(2,1) = k(1,2)

I+.A-

-1 -1
k(2,2) = - (DII+DI2) r i + (l+]k) 5 DII r i

r i-_

- (I+A) [ (J) + i]
r.

1

r. i-]_

-i- (l+J_-) (J)
r.

1

Beta ]

I+]_ r l+J_t r(_J) _ (_Z)
r. r.

z j

Be t a}
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k(2,3) = -k (2,1)

-2

k(2,4) = (1+]_) 5 DII r. r.1 3

(I+1_)

r.

1
k(3,1) : -- k(1,3)

r.
J

r°

k(3,2) = --i k (2,3)
r.

J

r. i-] t

J

r. 1+/_

J

+i]

+i]

Be ta }

1 _ "

[ (--I)
r.

J

] ÷

k(3,3) = -k (3,i)

r°

k(3,4) = - __l k (1,41
r.

J

k(4,1) -

r°

1

r .

J

k(1,4) = -k (3,4)

r.

k(4,2) = __1 k (2,4)
r.

J

k(4,3) = k(3,4) = -k (4,1)

-1 -1

k(4,4) = (Dll+D12) r. + (1+9%) 5 Dll r-
3 J

r. 1-J_

- (l+Jk) [ (-21 + i ]
r.
i

{ (rr__J.')I+/_ _
i

Beta}

r. 1+/k

J

o
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where,

-1
5

r. I+2L

= (_!)
r

i

i+_
r. r 2

+ (__1) -2- (l+J_) 2 (In _!J )
r r.

j 1

r. 2
2

[ 1 + _., (1-/M) 2 (In _3_3)r.
1

r. 4 r 6
2(l-J_) 4 (In J ) + (i-/_) 6 (In J )

r. _ r.
i 1

÷ ° ° ° ° ° ]

r ,

Beta = In _!J
r.

l

r. r. 2
1 J 1

1 - p--T (l-J_) In + (l-J_) 2 ( In )[
r. _ r.

1 i

i

4'.
(i-/_)

r. 3 r.
3 J 1(In) + "tl-_) 4 (In) ...... ]_!3

r. _.' r.

1 1
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Appendix E

Consideration of Numerical Errors

The numerical inaccuracies are due to two main causes both of which

exist in matrix [By] , see Chapter II. It can be observed that the Ist and 3rd;

and the and and 4th rows of this matrix respectively are of the same form.

For a ringe element whose inside and outside radii are of nearly the same

magnitude, the matrix becomes ill conditioned for inversion. The other and

more important cause of inaccuracy is due to parameter _ss it approaches

unity _ I. Then some of the terms in the inversion of the [BVJ matrix take

the form of (_) which lead to computational errors.

In general, these two causes of numerical errors do not occur in the

same element. A graph showing the plot of ]I-A_ vs. r./r. for the elements,
I | l j

and the probable zone of computational error is shown in Fig. 60. This is a

result of many tests on simply supported and clamped plates using the single

precision computer program.

Two measures have been taken to prevent these errors: In the program

for the elastic-perfectly plastic material, the elements of [B ]-I
L V J and [k]

have been expanded in series form as presented in Appendix D In

calculations enough terms of this expansion have been taken to assure

accuracy of results. This eliminates the inaccuracy due to A but not due

to r./r. as it approaches unity. The method used to minimize computational
i j

errors for hardening material consisted of using double precision in the

computer program. The results have been checked by testing whether

= [_I_]. This procedure yielded satisfactory results.

.-I

EB ] [Bvj
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Append ix F

Consideration of Variation of Material Properties Function Within A Step of
External Load

Considering the plate load and the state of stress as the independent

and dependent variables respectively, we can write

d T = F (T) d p (i)

where F(t) represents a function that transforms the external loads into

internal stresses and is expressed as a function of the state of stress.

Equation (1) is solved numerically by replacing d p and dT by finite

increments A p and AT

A T & F(T) Ap (2)

To solve Equation (2) with reasonable accuracy, Euler's modified

* 0 (Ap) 3method is used where the order of error is

Figure (59) is the flow diagram of the substeps taken in the computer

program to complete the (k+l)-th step of calculation represented by Equation

(2) for the hardening material. The procedure is basically the same for the

elastic' perfectly plastic material. The notations are the same as in

Chapter II.

Whenever unloading from a plastic state takes place in a layer the new

elastic properties are utilized and this modification is not used.

*Le,_,, H_ and Ba_gott, E.A., "Numerical Solutions of Differential Equations,"

pp. 92-96, Dover 1950.
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{'_P}k+l

t_]k [BI'_
!

_',_v;T /

%+1

- t

E T[ ]k.l

LK]k [Bv]-k'.,

FIG. 59



Appendix G

CONCISE FLOW CHARTS OF COMPUTER PROGRAMS
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ELASTIC- PLASTIC ANALYSIS OF A CIRCULAR PLATE WITH AXIS-SYMMETRIC LOADING

(EPACP |

I READ INPUT DATA I

- t
sETupFLEX_RALR'G'DITTOF_'CHELEMERT

0,, _[o._] _:,.Z; DEF,NEDR=(--_-,,) [
. I

SET UP STIFFNESS MATRIX OF

CENTRAL ELEMENT, [SK"j

ZX=

NO _ ]f DR-I : 0 _ YES

75

l SET UP STIFFNESS MATRIX OF I

RING ELEMENT, ['SKI WHEN

DR:_ | 4X4

I i=,

Nol

,85 t I

CALCULATE : I

I-TOTAL NODAL DISPL._V_

2-TOTAL STRESS RESULT.

AT NODAL RINGS, {0}

I
PRINT: NODAL DISPL., {V) I

STRESS RESULT.,{Q} I

,,s t
I SET UP STIFFNESS MATRIX IOF PLATE [K]

< CALL ENRIL {PZ} >

,,o

MODIFY [K] AND (PZ} FOR IBOUNDARY CONDITIONS

,GS I

I FIND NODAL INCREMENTAL

DISPLACEMENT, {.VZ.}

{vz) :[x_ £,,z)

,80
INCREMENT OF EXTERNAL

LOAD TEMPORARY

8O

SET UP STIFFNESS MATRIX OF I

RING ELEMENT, [SKI WHEN
4X4

DR: I

. I

EQUIVALENT NODAL RING

LOAD SUBROUTING

t
I FIND EQUIVALENT NODAL IRING iNC. LOAD, /LPZ}

I YES

I

l= ,=1

210 _ X-')(- _

/// CALL MATFUN /
J

END

THE NUMBERS REFER TO FORTRAN NUMBERS

STATEMENTS IN THE PROGRAM.

IN EPPACP,THE LOAD DISTRIBUTION ON NODAL

RINGS IS TRIBUTARY HENCE ENRIL IS

NOT USED

_IN EPPACAP THERE ARE TWO SUBROUTINES

FOR CONSTRUCTION OF MATERIAL PROPERTY

FUNCTIONS, AMAFUN AND IMAFUN

WHENEVER THE INCREMENT OF EXTERNAL

LOADING IS TEMPORARY AMAFUN IS USED

AND IF NOT IMAFUN.
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SUBROUTINE FOR THE FORMATION OF MATERIAL PROPERTY FUNCTIONS

( FOR HARDENING MATERIALS)

I CALCULATE THE DISTRIBUTION OF CHANGE IOF CURVATURE OF THE PLATE

5o I

lf TEMPORARY INCREMENT OF EXTERNAL LOAD
55EVALUATE THE TANGENTIAL MOMENT

AT EACH NODAL RING

75 t
CALCULATE THE STRESS INCREMENT

OF THE LAYERS IN EACH ELEMENT

__" 130

CALCULATE THE INITIAL MATERIAL

PROPERTIES FOR THE NEXT STEP

OF EXTERNAL LOAD

161 I
!

CALCULATE THE VALUE [

IOF EQUIVALENT STRAIN

163

ICALCULATE THE TOTAL CURVATURESI

I. TANGENTIAL MOMENTS

2. CURVATURES

3. RADIAL AND TANGENTIALS
STRESSES OF EACH LAYER

4. EFFECTIVE STRESS IN EACH LAYER

,5. EFFECTIVE STRAIN

If TEMPORARY INCREMENTS _ s

OF EXTERNAL LOAD

85

CALCULATE THE AVERAGE VALUE

.OF MATERIAL PROPERTIES IN

THIS STEP OF EXTERNAL LOAD
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I _,DINGPLAST'CA"YI

f PREVIOUS YIELD FUNCTiO

90

PERFORM RADIAL APPROXIMATION

lO LOCATE INTERSECTION OF
STRESS PATH AND YIELD SURFACE

I
115 t

PERFORM TANGENTIAL APPROXIMATION

TO LOCATE THE FINAL POSIT/ON ON

THE YIELD SURFACE

t
!

CALCULATE THE PLASTIC J

IMATERIAL PROPERTY FUNCTIONS

I
CALCULATE THE AVERAGE OF PRESENT AND I

PREVIOUS MATERIAL PROPERTY FUNCTIONS I

OF THE LAYER TO BE USED FOR

THIS INCREMENT OF LOAD I

I

SUBROUTINE FOR THE CALCULATION OF AVERAGE MMERIAL PROPERTY FUNCTIONS

{FOR ELASTIC- PERFECTLY PLASTIC MATERIAL)

25
CALCULATE THE DISTRIBUTION OF I

iNCREMENTAL CURVATURE OF THE

PLATE

i

I CALCULATE THE TEMPORAllY INCREMENTAL l

STRESS, TOTAL STRESS, AND YIELD FUNCTION

FOR EACH LAYER USING HOOK'S LAW

t
>0_ TEMPORARY YIELD FUNCTION _ <0

>0 _ :0

I START OF PLASTIC FLOW; IOR NEUTRAL LOADING

f It" PREVIOUS YIELD FUNCTION "_ <_0

t=°
--O_IFFERENCE BETWEENTEMPORARYAND'__I

TOTAL RADIAL STRESS _/

1 _PREI'OUS , > 0 __

=

I-

CALCULATE PLASTIC MATERIAL PROPERTY

FUNCTIONS TO BE USED FOR THIS INCREMENT

OF LOAD

I ELASTIC LOADING;OR UNLOADINGFROM PLASTIC STATE

CALCULATE ELASTIC MATERIAL

PROPERTY CONSTANTS TO BE

USED FOR THIS INCREMENT

OF LOAD
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SUBROUTINE FOR THE CALCULATION OF INITIAL MATERIAL PROPERTY FUNCTIONS

OF THE NEXT INCREMENT OF LOAD {FOR ELASTIC PERFECTLY PLASTIC MATERIAL)

75

I LOADING PLASTICALLY I

B5 I

90 <_-_ IfPREVIOUS YIELD FUNCTION_"

PERFORM RADIAL APPROXIMATION

TO LOCATE INTERSECTION OF

STRESS PATH AND YIELD SURFACE

II0 I

I PERFORM TANGENTIAL APPROXIMATION
TO LOCATE THE FINAL POSITION ON

THE YIELD SURFACE

CALCULATE INCREMENT OF STRESS ,

TOTAL STRESS AND PLASTIC MATERIAL

PROPERTY FUNCTIONS.

SET YIELD FUNCTION = 0

I

25

CALCULATE THE DISTRIBUTION OF

INCREMENTAL AND TOTAL

CURVATURE OF THE PLATE

CALCULATE THE TEMPORARY INCREMENTAL

STRESS, TOTAL STRESS, AND YIELD FUNCTION

FOR EACH LAYER USING HOOK'S LAW

I <0

>°C TEMPORARY YIELD FUNCTION

70 I :0

I START OF PLASTIC FLOW;OR NEUTRAL LOADING

I ACTUAL TOTAL STRESS:TEMPORARYTOTAL STRESS;FIELD FUNCTION = O

65 I

I ELASTIC LOADING;OR UNLOADING IFROM PLASTIC STATE

CALCULATE PLASTIC MATERIAL PROPERTY

FUNCTIONS FOR NEXT INCREMENT OF

EXTERNAL LOAD

ACTUAL TOTAL STRESS =

TEMPORARY STRESS;

YIELD FUNCTION =TEMPORARY

YIELD FUNCTION

CALCULATE ELASTIC MATERIAL

PROPERTY CONSTANTS FOR

NEXT INCREMENT OF

EXTERNAL LOAD.

CALCULATE TANGENTIAL

AND RACIAL MOMENTS

I
PRINT

I. RADIAL AND TANGENTIAL MOMENTS

2. CURVATURES

3. RADIAL AND TANGENTIAL STRESSES,

AND YIELD FUNCTION FOR

EACH LAYER
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a .

l

C

Cijk_

e..

xJ

E

E
t

E
ijk_

f

g

G

h

h k

H

J2 ' '1"3

k

r'

Mr 'Me

N

p(r)

Q

r,e,z

constants of integration, see (2.81) to (2.83)

as defined in (2.46)

elastic moduli

deviatoric strain tensor

Young's modulus

tangent modulus in uniaxial test

elastic-plastic modulus

yield function or loading function

a function as defined in (2.40)

non-negative function defined in (2.10)

plate thickness

the distance of k-th layer from the reference plane

function of equivalent plastic strain defined in (2.50)

second and third invariants of deviatoric stress tensor

yield stress in simple shear

radial and tangential curvatures

radial and tangential moments per unit length

number of elements

transverse load per unit area

radial transverse shear per unit length

coordinate axes of plate, z is measured positive downward

from the zefercnce p!an_
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S . .

iJ

S
ijkl

W
P

5..

ij

5

Z_

ij

d_ p

£r' E0

x3

n

K

k

A

deviatoric stress tensor

elastic-plastic compliance

vertical displacement of the middle plane, measured positive

downward

total plastic work per unit volume

a tensor representing the total translation of the center of

initial yield surface, see (2.45)

defined in (2.69)

defined in Appendix (D)

as s prefix desiginates finite increment

Kronecker delta

equivalent plastic strain increment defined in (2.42)

radial and tangential strains, respectively

strain tensor

parameter defined in (2.47)

work hardening parameter

Lam_ constant

square root of the ratio of tangential to radial flexursl

rigidity of plate

_t

V

o
Y

shear modulus

tangent modulus in simple shear

Poisson's ratio

defined in (2.69)

yield stress in unlaxial tension

effective stress defined in (2.51)
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IJ
stress tensor

non-negative function defined in (2.9)

slope

{}
[]

la}
4xl

[B s ]

4x4

[B v]

4x4

[D]
2x2

[E]

[E (k) ]

2x2

rk]L J

4x4

2Nxl

2Nxl

t-j
4xl

Vectors and Matrices

column vector

square matrix

arbitrary constants, see (2.81) to (2.83)

as defined in (2.90)

displacements transformation matrix, defined in (2.93)

flexured rigidity of plate, defined in (2.72)

elastic-plastic moduli

elastic-plastic moduli associated with k-th layer

element stiffness matrix

generalized nodal ring load, see (2.120)

displacements and rotations at nodal rings

nodal ring forces per unit length of plate

nodal ring forces per unit length for an element
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Is3
9x9

Iv}
4xl

elastic-plastic compliance

nodal ring displacement for an element see (2.94)

strain increment vector (2.24)

stress increment vector (2.24)

Subscripts

_,_,T,5 range I, 2

i,j,k,I range I, 2, 3


